Linear Algebra

Chao Ren

July 2023

Contents

1	1 Vector Spaces	2
	1.1 \mathbb{R}^n and \mathbb{C}^n	
	1.1.1 Complex Numbers	
	1.1.2 Lists \ldots \ldots \ldots \ldots \ldots	
	1.1.3 \mathbb{F}^n	4
	1.1.4 Digression on Fields	
	1.1.5 Exercises 1.1	

§1 Vector Spaces

§1.1 \mathbb{R}^n and \mathbb{C}^n

§1.1.1 Complex Numbers

Definition 1.1 (Complex Numbers). A complex number is an ordered pair (a, b), where $a, b \in \mathbb{R}$, but we will write this as a + bi. The set of all complex numbers is denoted by \mathbb{C} :

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$$

Addition and multiplication on \mathbb{C} are defined by

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

 $(a+bi)(c+di) = (ac-bd) + (ad+bc)i$

If $a \in \mathbb{R}$, we identify a + 0i with the real number a. Thus we can think that $\mathbb{R} \subset \mathbb{C}$.

Example 1.2 Evaluate (2+3i)(4+5i)

$$(8-15) + (10+12)i = -7 + 22i$$

Proposition 1.3 (Properties of complex arithmetic) Commutativity: $\alpha + \beta = \beta + \alpha \text{ and } \alpha\beta = \beta\alpha \text{ for all } \alpha, \beta \in \mathbb{C}$ Associativity: $(\alpha + \beta) + \gamma = \alpha + (\beta + \lambda) \text{ and } (\alpha\beta)\gamma = \alpha(\beta\gamma) \text{ for all } \alpha, \beta, \gamma \in \mathbb{C}$ Identities: $\lambda + 0 = \lambda \text{ and } \lambda 1 = \lambda \text{ for all } \lambda \in \mathbb{C}$

Additive Inverse:

 $\forall \alpha \in \mathbb{C}$ there exists a unique $\beta \in \mathbb{C}$ such that $\alpha + \beta = 0$

Multiplicative Inverse:

```
\forall \alpha \in \mathbb{C} with \alpha \neq 0, there exists a unique \beta \in \mathbb{C} such that \alpha \beta = 1
```

Distributive Property

```
\lambda(\alpha + \beta) = \lambda \alpha + \lambda \beta for all \lambda, \alpha, \beta \in \mathbb{C}
```

The properties above are proved using properties of real numbers and definition of complex addition and multiplication.

Example 1.4 Prove that for all $\alpha, \beta \in \mathbb{C}$, $\alpha\beta = \beta\alpha$ *Proof.* Suppose $\alpha = a + bi$ and $\beta = c + di$. Then,

$$\alpha\beta = (a+bi)(c+di)$$
$$= (ac-bd) + (ad+bc)i$$
$$= (ca-db) + (da+cb)i$$
$$= (c+di)(a+bi)$$
$$= \beta\alpha$$

Definition 1.5 (Subtraction and division). Let $\alpha, \beta \in \mathbb{C}$. $-\alpha$ is the unique additive inverse of α so that $\alpha + (-\alpha) = 0$. Subtraction on \mathbb{C} is defined by $\beta - \alpha = \beta + (-\alpha)$.

For $\alpha \neq 0$, let $1/\alpha$ be the unique multiplicative inverse of α so that $\alpha(1/\alpha) = 1$. Division on \mathbb{C} is defined by $\beta/\alpha = \beta(1/\alpha)$

Remark 1.6. Notation: For our purposes, \mathbb{F} stands for either \mathbb{R} or \mathbb{C} . This is because \mathbb{R} and \mathbb{C} are both examples of fields.

Definition 1.7 (Scalars). Elements of \mathbb{F} are called scalars. We say scalars to emphasize that an object is a number rather than a vector.

Definition 1.8 (Exponentiation). For $\alpha \in \mathbb{F}$ and *m* is a positive integer,

$$\alpha^m = \underbrace{\alpha \cdots \alpha}_{m \text{ times}}$$

§1.1.2 Lists

Example 1.9

 \mathbb{R}^2 and \mathbb{R}^3 are examples of lists. The set \mathbb{R}^2 , which can be thought of as a plane, is the set of all ordered pairs of real numbers:

 $\mathbb{R}^2 = \{(a,b): a, b \in \mathbb{R}\}$

The set \mathbb{R}^3 can be thought of as ordinary space and is the set of all ordered triples:

 $\mathbb{R}^3 = \{(a, b, c) : a, b, c \in \mathbb{R}\}$

Definition 1.10 (Lists, lengths). Let $n \in \mathbb{Z}_{\geq 0}$. A list of length n is an ordered collection of n elements (numbers, lists, other abstract entities) separated by commas and surrounded by parentheses:

 (x_1, x_2, \ldots, x_n)

Many mathematicians call a list of length n an n-tuple. A list of length 0 looks like (). We consider such an object to be a list so that certain theorems will not have trivial exceptions. Lists are different from sets because orders and repetitions matter in lists.

Example 1.11

The lists $(3,5) \neq (5,3)$, but the sets $\{3,5\} = \{5,3\}$. The lists $(4,4) \neq (4,4,4)$ but the sets $\{4,4\} = \{4,4,4\}$.

§1.1.3 \mathbb{F}^n

Definition 1.12 (\mathbb{F}^n). \mathbb{F}^n is the set of all lists of length *n* of elements of \mathbb{F} :

$$\mathbb{F}^n = \{ (x_1, \dots, x_n) : x_j \in \mathbb{F} \text{ for } j = 1, \dots, n \}$$

For $(x_1, \ldots, x_n) \in \mathbb{F}^n$ and $j \in \{1, \ldots, n\}$, we say that x_j is the j^{th} coordinate of (x_1, \ldots, x_n) .

Example 1.13

 \mathbb{C}^4 is the set of all lists of four complex numbers:

$$C^4 = \{(z_1, z_2, z_3, z_4) : z_1, z_2, z_3, z_4 \in \mathbb{C}\}$$

Despite not being able to visualize \mathbb{F}^n as a physical object for $n \ge 4$, we can still define algebraic manipulations in \mathbb{F}^n easily.

Definition 1.14 (Addition in \mathbb{F}^n). Addition in \mathbb{F}^n is defined by adding corresponding coordinates:

$$(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n)$$

The mathematics of \mathbb{F}^n becomes cleaner if we use a single variable to denote a list of n numbers without writing out all the coordinates. For example:

Claim 1.15 (Commutativity of addition in \mathbb{F}^n) — If $x, y \in \mathbb{F}^n$, then x + y = y + x.

Proof.

$$x + y = (x_1, \dots, x_n) + (y_1, \dots, y_n)$$

= $(x_1 + y_1, \dots, x_n + y_n)$
= $(y_1 + x_1, \dots, y_n + x_n)$
= $(y_1, \dots, y_n) + (x_1, \dots, x_n)$
= $y + x$

г	_	
L		
L		

Definition 1.16 (0). Let 0 denote the list of length n whose coordinates are all 0:

$$0 = (0, \ldots, 0)$$

Fact 1.17. 0 is the additive identity in \mathbb{F}^n .

A typical element of R^2 is a point $x = (x_1, x_2)$. When we think of x as an arrow starting at the origin and ending at (x_1, x_2) , we refer to it as a *vector*.

Definition 1.18. For $x \in \mathbb{F}^n$, the additive inverse of x, denoted -x, is the vector $-x \in \mathbb{F}^n$ such that

$$x + (-x) = 0$$

i.e. if $x = (x_1, ..., x_n)$ then $-x = (-x_1, ..., -x_n)$

For a vector $x \in \mathbb{R}^2$, the additive inverse -x is the vector parallel to x and with the same magnitude but pointing in the opposite direction.

Having dealt with addition, we can now deal with multiplication in \mathbb{F}^n . However, past experiences have shown that multiplying two elements of \mathbb{F}^n is not very useful for our purposes, so we can instead look toward scalar multiplication, which is multiplying an element of \mathbb{F}^n by an element of \mathbb{F} . **Definition 1.19.** The product of a number λ and a vector in \mathbb{F}^n is defined as:

$$\lambda(x_1,\ldots,x_n) = (\lambda x_1,\ldots,\lambda x_n)$$

Where $\lambda \in \mathbb{F}$ and $(x_1, \ldots, x_n) \in \mathbb{F}^n$.

In \mathbb{R}^2 , we have a nice geometric interpretation (scale by λ in direction depending on sign of λ).

§1.1.4 Digression on Fields

A field is a set containing at least two distinct elements 0 and 1, along with addition and multiplication satisfying all the properties in 1.3. In these notes \mathbb{F} will represent \mathbb{R} or \mathbb{C} but most properties we discuss will hold true for all fields. However, some examples/exercises require that for each positive integer n we have $1 + 1 + \dots + 1 \neq 0$.

n times

§1.1.5 Exercises 1.1

Exercise 1.20. Suppose a and b are nonzero real numbers. Find real numbers c and d such that

$$1/(a+bi) = c+di$$

We have

$$(a+bi)(a-bi) = a^{2} + b^{2}$$
$$\frac{1}{a+bi} = \frac{a-bi}{a^{2}+b^{2}}$$
$$= \frac{a}{a^{2}+b^{2}} - \frac{b}{a^{2}+b^{2}}i$$

So, $c = \frac{a}{a^2 + b^2}$, $d = -\frac{b}{a^2 + b^2}$.