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§1 Vector Spaces

§1.1 Rn and Cn

§1.1.1 Complex Numbers

Definition 1.1 (Complex Numbers). A complex number is an ordered pair (a, b), where a, b ∈ R, but we will
write this as a + bi. The set of all complex numbers is denoted by C:

C = {a + bi ∶ a, b ∈ R}

Addition and multiplication on C are defined by

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi)(c + di) = (ac − bd) + (ad + bc)i

If a ∈ R, we identify a + 0i with the real number a. Thus we can think that R ⊂ C.

Example 1.2

Evaluate (2 + 3i)(4 + 5i)

(8 − 15) + (10 + 12)i = −7 + 22i

Proposition 1.3 (Properties of complex arithmetic)

Commutativity:

α + β = β + α and αβ = βα for all α,β ∈ C

Associativity:

(α + β) + γ = α + (β + λ) and (αβ)γ = α(βγ) for all α,β, γ ∈ C

Identities:

λ + 0 = λ and λ1 = λ for all λ ∈ C

Additive Inverse:

∀α ∈ C there exists a unique β ∈ C such that α + β = 0

Multiplicative Inverse:

∀α ∈ C with α ≠ 0, there exists a unique β ∈ C such that αβ = 1

Distributive Property

λ(α + β) = λα + λβ for all λ,α, β ∈ C

The properties above are proved using properties of real numbers and definition of complex addition and
multiplication.

Example 1.4

Prove that for all α,β ∈ C, αβ = βα
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Proof. Suppose α = a + bi and β = c + di. Then,

αβ = (a + bi)(c + di)

= (ac − bd) + (ad + bc)i

= (ca − db) + (da + cb)i

= (c + di)(a + bi)

= βα

Definition 1.5 (Subtraction and division). Let α,β ∈ C. −α is the unique additive inverse of α so that
α + (−α) = 0. Subtraction on C is defined by β − α = β + (−α).

For α ≠ 0, let 1/α be the unique multiplicative inverse of α so that α(1/α) = 1. Division on C is defined by
β/α = β(1/α)

Remark 1.6. Notation: For our purposes, F stands for either R or C. This is because R and C are both examples
of fields.

Definition 1.7 (Scalars). Elements of F are called scalars. We say scalars to emphasize that an object is a
number rather than a vector.

Definition 1.8 (Exponentiation). For α ∈ F and m is a positive integer,

αm
= α⋯α
±

m times

§1.1.2 Lists

Example 1.9

R2 and R3 are examples of lists. The set R2, which can be thought of as a plane, is the set of all ordered
pairs of real numbers:

R2
= {(a, b) ∶ a, b ∈ R}

The set R3 can be thought of as ordinary space and is the set of all ordered triples:

R3
= {(a, b, c) ∶ a, b, c ∈ R}

Definition 1.10 (Lists, lengths). Let n ∈ Z≥0. A list of length n is an ordered collection of n elements (numbers,
lists, other abstract entities) separated by commas and surrounded by parentheses:

(x1, x2, . . . , xn)

Many mathematicians call a list of length n an n-tuple. A list of length 0 looks like (). We consider such an
object to be a list so that certain theorems will not have trivial exceptions. Lists are different from sets because
orders and repetitions matter in lists.

Example 1.11

The lists (3,5) ≠ (5,3), but the sets {3,5} = {5,3}.
The lists (4,4) ≠ (4,4,4) but the sets {4,4} = {4,4,4}.
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§1.1.3 Fn

Definition 1.12 (Fn). Fn is the set of all lists of length n of elements of F:

Fn
= {(x1, . . . , xn) ∶ xj ∈ F for j = 1, . . . , n}

For (x1, . . . , xn) ∈ Fn and j ∈ {1, . . . , n}, we say that xj is the jth coordinate of (x1, . . . , xn).

Example 1.13

C4 is the set of all lists of four complex numbers:

C4
= {(z1, z2, z3, z4) ∶ z1, z2, z3, z4 ∈ C}

Despite not being able to visualize Fn as a physical object for n ≥ 4, we can still define algebraic manipulations
in Fn easily.

Definition 1.14 (Addition in Fn). Addition in Fn is defined by adding corresponding coordinates:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

The mathematics of Fn becomes cleaner if we use a single variable to denote a list of n numbers without
writing out all the coordinates. For example:

Claim 1.15 (Commutativity of addition in Fn) — If x, y ∈ Fn, then x + y = y + x.

Proof.

x + y = (x1, . . . , xn) + (y1, . . . , yn)

= (x1 + y1, . . . , xn + yn)

= (y1 + x1, . . . , yn + xn)

= (y1, . . . , yn) + (x1, . . . , xn)

= y + x

Definition 1.16 (0). Let 0 denote the list of length n whose coordinates are all 0:

0 = (0, . . . ,0)

Fact 1.17. 0 is the additive identity in Fn.

A typical element of R2 is a point x = (x1, x2). When we think of x as an arrow starting at the origin and
ending at (x1, x2), we refer to it as a vector.

Definition 1.18. For x ∈ Fn, the additive inverse of x, denoted −x, is the vector −x ∈ Fn such that

x + (−x) = 0

i.e. if x = (x1, . . . , xn) then −x = (−x1, . . . ,−xn)

For a vector x ∈ R2, the additive inverse −x is the vector parallel to x and with the same magnitude but
pointing in the opposite direction.

Having dealt with addition, we can now deal with multiplication in Fn. However, past experiences have
shown that multiplying two elements of Fn is not very useful for our purposes, so we can instead look toward
scalar multiplication, which is multiplying an element of Fn by an element of F.
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Definition 1.19. The product of a number λ and a vector in Fn is defined as:

λ(x1, . . . , xn) = (λx1, . . . , λxn)

Where λ ∈ F and (x1, . . . , xn) ∈ Fn.

In R2, we have a nice geometric interpretation (scale by λ in direction depending on sign of λ).

§1.1.4 Digression on Fields

A field is a set containing at least two distinct elements 0 and 1, along with addition and multiplication satisfying
all the properties in 1.3. In these notes F will represent R or C but most properties we discuss will hold true for
all fields. However, some examples/exercises require that for each positive integer n we have 1 + 1 +⋯ + 1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

≠ 0.

§1.1.5 Exercises 1.1

Exercise 1.20. Suppose a and b are nonzero real numbers. Find real numbers c and d such that

1/(a + bi) = c + di

We have

(a + bi)(a − bi) = a2 + b2

1

a + bi
=

a − bi

a2 + b2

=

a

a2 + b2
−

b

a2 + b2
i

So, c = a
a2+b2

, d = − b
a2+b2

.

5


	Vector Spaces
	Rn and Cn
	Complex Numbers
	Lists
	Fn
	Digression on Fields
	Exercises 1.1



